Asymptotic Normality of Nonparametric Tests for Independence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Tests for Independence

Glossary Hypothesis A hypothesis is a statement concerning the (joint) distribution underlying the observed data. Nonparametric test In contrast to a parametric test, a nonparametric test does not presume a particular parametric structure concerning the data generating process. Serial dependence Statistical dependence among time series observations.

متن کامل

Consistent Nonparametric Tests of Independence

Three simple and explicit procedures for testing the independence of two multi-dimensional random variables are described. Two of the associated test statistics (L1, log-likelihood) are defined when the empirical distribution of the variables is restricted to finite partitions. A third test statistic is defined as a kernel-based independence measure. Two kinds of tests are provided. Distributio...

متن کامل

Tests for Independence in Nonparametric Regression

Consider the nonparametric regression model Y = m(X) + ε, where the function m is smooth, but unknown. We construct tests for the independence of ε and X, based on n independent copies of (X, Y ). The testing procedures are based on differences of neighboring Y ’s. We establish asymptotic results for the proposed tests statistics, investigate their finite sample properties through a simulation ...

متن کامل

Tests for independence in nonparametric regression ( supplement )

Proof of (2.17) From (2.10) we have with high probability for large n and uniformly in x and y √ n(F n (x, y) − ˆ F X (x) ˆ G(y)) ≤ α n x, y + log 2 n n − G(y)α n (x, ∞) − ˆ F X (x) α n ∞, y − log 2 n n + 2C log 2 n √ n , √ n(F n (x, y) − ˆ F X (x) ˆ G(y)) ≥ α n x, y − log 2 n n − G(y)α n (x, ∞) − ˆ F X (x) α n ∞, y + log 2 n n − 2C log 2 n √ n. Set V n,0 = √ n(F n − ˆ F X ˆ G). From (2.12) and...

متن کامل

Improved Rates and Asymptotic Normality for Nonparametric Neural Network Estimators

Barron (1993) obtained a deterministic approximation rate (in L2-norm) of r-l12. for a class of single hidden layer feedforward artificial neural networks (ANN) with r hidden units and sigmoid activation functions when the target function satisfies certain smoothness conditions. Hornik, Stinchcombe, White, and Auer (HSWA, 1994) extended Barron's result to a class of ANNs with possibly non-sigmo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Mathematical Statistics

سال: 1972

ISSN: 0003-4851

DOI: 10.1214/aoms/1177692465